Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis(µ₃-dodecyl sulfato)calcium]

Genta Sakane,* Masahiro Tomohara, Yasuhiro Katayama and Koya Hayashi

Department of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan

Correspondence e-mail: gsakane@chem.ous.ac.jp

Received 20 May 2010; accepted 31 May 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.088; data-to-parameter ratio = 10.6.

In the title compound $[Ca(C_{12}H_{25}O_4S)_2]_n$, the unique Ca^{II} ion lies on an inversion center and is coordinated in a slightly distorted octahedral environment by six O atoms from dodecyl sulfate anions. The crystal structure is based on hydrocarbon (dodecyl sulfate) layers which sandwich the Ca^{II} ions. Within the layers, the hydrocarbon zigzag chains are parallel to one another and interact *via* van der Waals forces.

Related literature

For studies of the title compound using atomic force microscopy, see: Rodriguez *et al.* (2002). For the Krafft point of the title compound, see: Hato & Shinoda (1973).

Experimental

Crystal data [Ca(C₁₂H₂₅O₄S)₂]

 $M_r = 570.84$

Triclinic, $P\overline{1}$	V = 743.22 (7) Å ³
a = 5.3888 (3) Å	Z = 1
b = 5.3834 (3) Å	Mo $K\alpha$ radiation
c = 29.1922 (16) Å	$\mu = 0.39 \text{ mm}^{-1}$
$\alpha = 93.4321 \ (19)^{\circ}$	$T = 93 { m K}$
$\beta = 90.099 \ (4)^{\circ}$	$0.50 \times 0.10 \times 0.10$ mm
$\gamma = 118.393 \ (5)^{\circ}$	
Data collection	

Rigaku R-AXIS IV diffractometer2396 reflections with $I > 2\sigma(I)$ 4361 measured reflections $R_{int} = 0.031$ 2500 independent reflections $R_{int} = 0.031$

Refinement

235 parameters
All H-atom parameters refined
$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *Yadokari-XG* 2009 (Kabuto *et al.*, 2009); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Yadokari-XG* 2009 and *VESTA* (Momma *et al.*, 2008); software used to prepare material for publication: *Yadokari-XG* 2009.

This work was supported by matching fund subsidy for private universities from MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5055).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Hato, M. & Shinoda, K. (1973). Bull. Chem. Soc. Jpn, 46, 3889-3890.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
- Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rodriguez, C. H., Yuan, W.-L., Scamehorn, J. F. & O'Rear, E. A. (2002). J. Surfact. Deterg. 5, 269–280.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m749 [doi:10.1107/S1600536810020659]

Poly[bis(#3-dodecyl sulfato)calcium]

G. Sakane, M. Tomohara, Y. Katayama and K. Hayashi

Comment

The crystal of the title compound, (I) (Fig. 1), is mechanically flexible because (I) is a two-dimensional layered compound which is characterized by strong covalent bonds and coordination bonds within the layers and weak van der Waals forces between the layers (Fig. 2).

Experimental

The title compound was prepared by the addition of $CaCl_2$ to sodium dodecyl sulfate (SDS) in a water-ethanol mixed solvent. A crystal suitable for single-crystal X-ray diffraction was selected directly from the prepared sample.

Refinement

All H atoms were located in a difference map as peaks of density and refined with isotropic thermal parameters; the range of C—H bond lengths is 0.94 (2)-1.03 (3) Å.

Figures

Fig. 1. The asymmetric unit of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are shown as spheres of arbitary radius.

Fig. 2. The packing of (I), viewed along the b axis, showing hydrocarbon (dodecyl sulfate) layers which sandwich Ca atoms.

Poly[bis(µ3-dodecyl sulfato)calcium]

Crystal data

 $[Ca(C_{12}H_{25}O_4S)_2]$ $M_r = 570.84$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 5.3888 (3) Å b = 5.3834 (3) Å c = 29.1922 (16) Å Z = 1 F(000) = 310 $D_x = 1.275 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71069 \mathbf{A} Cell parameters from 3581 reflections $\theta = 1.4-25.5^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$

$\alpha = 93.4321 \ (19)^{\circ}$
$\beta = 90.099 \ (4)^{\circ}$
γ = 118.393 (5)°
V = 743.22 (7) Å ³

Data collection

Needle, colourless
$0.50 \times 0.10 \times 0.10 \text{ mm}$

T = 93 K

Rigaku R-AXIS IV diffractometer	2396 reflections with $I > 2\sigma(I)$
Radiation source: rotating-anode X-ray	$R_{\rm int} = 0.031$
Graphite Monochromator	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Detector resolution: 10.0 pixels mm ⁻¹	$h = -5 \rightarrow 5$
ω scans	$k = -6 \rightarrow 6$
4361 measured reflections	$l = -35 \rightarrow 35$
2500 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.088$	All H-atom parameters refined
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.4436P]$ where $P = (F_o^2 + 2F_c^2)/3$
2500 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
235 parameters	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cal	-1.0000	-0.5000	0.5000	0.00470 (14)
S1	-0.37678 (7)	-0.17886 (7)	0.442177 (11)	0.00452 (13)
01	-0.2874 (2)	-0.2127 (2)	0.39188 (3)	0.0088 (3)

Atomic disp	olacement paramete	$rrs(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca1	0.0033 (2)	0.0043 (2)	0.0060 (2)	0.00128 (17)	0.00087 (15)	0.00124 (15)
S1	0.0037 (2)	0.0044 (2)	0.00495 (19)	0.00141 (16)	0.00119 (13)	0.00066 (13)
01	0.0050 (6)	0.0096 (6)	0.0069 (5)	-0.0003 (4)	0.0035 (4)	-0.0005 (4)
02	0.0053 (6)	0.0081 (5)	0.0079 (5)	0.0005 (4)	0.0019 (4)	0.0005 (4)

	T ¹¹	- 122 1 133	r 12	r 13
Atomic displa	cement parameters (Å	²)		
1123	2.077 (0)	0.5 ++ (5)	0.0275 (0)	0.057
H25	2 097 (6)	0.030(3)	0.0318(8)	0.037*
H24	1.771 (0)	0.110(3)	0.0132(9) 0.0518(8)	0.037*
H22	1.900 (3)	0.437(3) 0.110(5)	0.1011(8) 0.0152(0)	0.030*
п21 H22	1.775 (3)	0.400 (3)	0.0041(8) 0.1011(8)	0.030*
H20 H21	1.360 (3)	-0.007(3)	0.1123(8)	0.030*
нту ноо	1.399 (3)	0.041(3)	0.0707(8) 0.1122(9)	0.030*
H18 H10	1.000 (5)	0.369 (5)	0.1019 (8)	0.030*
HI/	1.415 (5)	0.426 (5)	0.1260 (8)	0.030*
H10	1.216 (5)	-0.082(5)	0.1/22(8)	0.030*
ні э	1.032 (5)	-0.013 (5)	0.1384 (8)	0.030*
H14	1.251 (5)	0.302(5)	0.2243(8)	0.030*
H13	1.005 (5)	0.367(5)	0.1885(8)	0.030*
H12	0.850(5)	-0.15/(5)	0.2328(8)	0.030*
ПП 1112	0.0/0(5)	-0.078(5)	0.1980 (8)	0.030*
H10 1111	0.880 (5)	0.224(5)	0.2801(8)	0.030*
H9 1110	0.708(5)	0.296 (5)	0.2313(7)	0.030*
H8	0.484 (5)	-0.230(5)	0.2944 (8)	0.030*
H/	0.302(5)	-0.159(5)	0.2590 (8)	0.030*
H0	0.512(5)	0.159 (5)	0.34/9(8)	0.030*
п) Ц6	0.352(5)	0.218(5)	0.3138(8)	0.030*
П4 U5	0.095 (5)	-0.318(3)	0.3310(8)	0.030*
H3	-0.066(5)	-0.220(5)	0.31/4(8) 0.2516(8)	0.030*
H2	0.129(5)	0.029 (5)	0.4080(8) 0.2174(8)	0.030*
	-0.004(3)	0.149(3)	0.3738 (8)	0.030*
U12	-0.004(5)	0.2000(3)	0.03980(0) 0.3728(9)	0.0248 (4)
C12	$1.\delta 122 (4)$ 1.0121 (5)	0.3408 (4)	0.07/13(0)	0.0202(4)
C10	1.5462 (4)	0.13/6(4)	0.099/9(5)	0.0202 (4)
C10	1.4510 (4)	0.2760(4)	0.13817 (5)	0.0135 (4)
	1.1836 (4)	0.0689 (3)	0.16093 (5)	0.0121 (3)
C7	1.0951 (4)	0.2073 (3)	0.20023 (5)	0.0121 (3)
C6	0.8242 (4)	0.0010 (3)	0.22225 (5)	0.0113 (3)
CS	0.7364 (4)	0.1365 (3)	0.26211 (5)	0.0108 (3)
C4	0.4633(4)	-0.0705(3)	0.28353 (5)	0.0110 (3)
C3	0.3718 (4)	0.0621 (3)	0.32332 (5)	0.0106 (3)
C2	0.0898 (3)	-0.1473 (3)	0.34179 (5)	0.0098 (3)
Cl	0.0057 (3)	-0.0139 (3)	0.38163 (5)	0.0099 (3)
04	-0.2238 (2)	-0.2644 (2)	0.47274 (3)	0.0106 (3)
03	-0.3024 (2)	0.1177 (2)	0.45120 (3)	0.0086 (2)
01	0.2024 (2)	0.1177(2)	0.45120 (2)	0.000((3))

-0.3652 (2)

02

-0.6786 (2)

0.0082 (2)

0.44018 (3)

0.0090 (6)	0.0064 (5)	0.0099 (5)	0.0034 (4)	0.0004 (4)	-0.0006 (4)
0.0099 (6)	0.0116 (5)	0.0120 (5)	0.0061 (5)	-0.0008 (4)	0.0036 (4)
0.0061 (8)	0.0096 (8)	0.0106 (7)	0.0008 (6)	0.0044 (6)	0.0015 (6)
0.0083 (8)	0.0110 (8)	0.0091 (7)	0.0039 (6)	0.0033 (6)	0.0005 (6)
0.0091 (9)	0.0122 (8)	0.0099 (7)	0.0045 (6)	0.0036 (6)	0.0023 (6)
0.0096 (8)	0.0130 (8)	0.0107 (7)	0.0057 (6)	0.0037 (6)	0.0015 (6)
0.0094 (9)	0.0127 (8)	0.0103 (7)	0.0051 (7)	0.0043 (6)	0.0026 (6)
0.0096 (9)	0.0149 (8)	0.0106 (7)	0.0066 (7)	0.0033 (6)	0.0019 (6)
0.0094 (8)	0.0145 (8)	0.0116 (7)	0.0050 (7)	0.0050 (6)	0.0016 (6)
0.0110 (9)	0.0150 (8)	0.0110 (7)	0.0066 (7)	0.0038 (6)	0.0019 (6)
0.0117 (9)	0.0168 (9)	0.0128 (7)	0.0075 (7)	0.0064 (6)	0.0024 (6)
0.0130 (9)	0.0187 (9)	0.0119 (7)	0.0087 (7)	0.0042 (6)	0.0009 (6)
0.0215 (10)	0.0244 (10)	0.0181 (8)	0.0131 (8)	0.0113 (7)	0.0060 (7)
0.0256 (11)	0.0392 (12)	0.0179 (9)	0.0216 (9)	0.0116 (7)	0.0067 (8)
	0.0090 (6) 0.0099 (6) 0.0061 (8) 0.0083 (8) 0.0091 (9) 0.0096 (8) 0.0094 (9) 0.0096 (9) 0.0094 (8) 0.0110 (9) 0.0117 (9) 0.0130 (9) 0.0215 (10) 0.0256 (11)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ccccccc} 0.0090\ (6) & 0.0064\ (5) & 0.0099\ (5) \\ 0.0099\ (6) & 0.0116\ (5) & 0.0120\ (5) \\ 0.0061\ (8) & 0.0096\ (8) & 0.0106\ (7) \\ 0.0083\ (8) & 0.0110\ (8) & 0.0091\ (7) \\ 0.0091\ (9) & 0.0122\ (8) & 0.0099\ (7) \\ 0.0096\ (8) & 0.0130\ (8) & 0.0107\ (7) \\ 0.0096\ (8) & 0.0127\ (8) & 0.0103\ (7) \\ 0.0096\ (9) & 0.0149\ (8) & 0.0106\ (7) \\ 0.0094\ (8) & 0.0145\ (8) & 0.0116\ (7) \\ 0.0094\ (8) & 0.0150\ (8) & 0.0110\ (7) \\ 0.0110\ (9) & 0.0150\ (8) & 0.0110\ (7) \\ 0.0117\ (9) & 0.0168\ (9) & 0.0128\ (7) \\ 0.0130\ (9) & 0.0187\ (9) & 0.0181\ (8) \\ 0.0256\ (11) & 0.0392\ (12) & 0.0179\ (9) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Ca1—O4 ⁱ	2.2955 (11)	С4—Н8	0.99 (2)
Ca1—O4 ⁱⁱ	2.2956 (11)	C5—C6	1.529 (2)
Ca1—O3 ⁱⁱⁱ	2.3177 (10)	С5—Н9	1.01 (2)
Ca1—O3 ^{iv}	2.3178 (11)	С5—Н10	0.98 (2)
Ca1—O2	2.3544 (10)	C6—C7	1.524 (2)
Ca1—O2 ^v	2.3544 (10)	С6—Н11	0.99 (2)
Ca1—S1 ^v	3.4589 (4)	С6—Н12	0.99 (2)
Ca1—S1	3.4589 (4)	С7—С8	1.528 (2)
S1—O4	1.4474 (11)	С7—Н13	1.03 (2)
S1—O2	1.4476 (11)	С7—Н14	1.00 (2)
S1—O3	1.4558 (11)	C8—C9	1.525 (2)
S1—O1	1.5732 (10)	С8—Н15	0.96 (2)
O1—C1	1.4703 (18)	С8—Н16	0.98 (2)
O3—Ca1 ^{vi}	2.3177 (10)	C9—C10	1.530 (2)
O4—Ca1 ^{vii}	2.2956 (11)	С9—Н17	1.00 (2)
C1—C2	1.512 (2)	С9—Н18	0.99 (2)
C1—H1	0.94 (2)	C10—C11	1.522 (2)
C1—H2	0.96 (2)	C10—H19	0.96 (2)
C2—C3	1.522 (2)	C10—H20	0.97 (2)
С2—Н3	1.01 (2)	C11—C12	1.528 (2)
С2—Н4	0.99 (2)	C11—H21	0.98 (2)
C3—C4	1.529 (2)	C11—H22	0.96 (2)
С3—Н5	0.95 (2)	С12—Н23	0.97 (3)
С3—Н6	0.96 (2)	C12—H24	1.00 (3)
C4—C5	1.525 (2)	C12—H25	1.00 (3)
C4—H7	1.03 (2)		
O4 ⁱ —Ca1—O4 ⁱⁱ	179.997 (1)	С2—С3—Н6	109.6 (14)
O4 ⁱ —Ca1—O3 ⁱⁱⁱ	86.81 (4)	С4—С3—Н6	111.4 (15)
O4 ⁱⁱ —Ca1—O3 ⁱⁱⁱ	93.19 (4)	Н5—С3—Н6	105.4 (19)

O4 ⁱ —Ca1—O3 ^{iv}	93.19 (4)	C5—C4—C3	114.00 (13)
O4 ⁱⁱ —Ca1—O3 ^{iv}	86.81 (4)	С5—С4—Н7	110.0 (13)
O3 ⁱⁱⁱ —Ca1—O3 ^{iv}	179.997 (1)	С3—С4—Н7	108.4 (14)
O4 ⁱ —Ca1—O2	92.58 (4)	С5—С4—Н8	109.4 (14)
O4 ⁱⁱ —Ca1—O2	87.43 (4)	С3—С4—Н8	109.1 (13)
O3 ⁱⁱⁱ —Ca1—O2	87.11 (4)	H7—C4—H8	105.6 (19)
O3 ^{iv} —Ca1—O2	92.90 (4)	C4—C5—C6	113.36 (13)
$O4^{i}$ —Ca1— $O2^{v}$	87.43 (4)	С4—С5—Н9	107.5 (14)
O4 ⁱⁱ —Ca1—O2 ^v	92.57 (4)	С6—С5—Н9	110.2 (13)
$O3^{iii}$ —Ca1— $O2^{v}$	92.89 (4)	C4—C5—H10	109.0 (14)
$O3^{iv}$ —Ca1— $O2^{v}$	87.10 (4)	C6—C5—H10	111.1 (15)
0^{2} —Ca1— $0^{2^{V}}$	179.998 (2)	H9—C5—H10	105.3 (19)
$O4^{i}$ Cal S1 ^v	80.30 (3)	C7—C6—C5	113.72 (13)
O^{4ii} Cal SI	99 70 (3)	C7—C6—H11	108 4 (13)
$O_4 = Ca1 = S1$	75 13 (3)	C5-C6-H11	107.9(14)
O_{2}^{iv} Cal S_{1}^{iv}	104.86 (3)	C7C6H12	107.5(14)
$C_2 = C_2 + S_1^{V}$	161.13 (3)	C5-C6-H12	100.3(14) 110.0(13)
02— $ca1$ — $S1$	18 87 (3)	H11 C6 H12	108.1(10)
	18.87(3)	C6 C7 C8	100.1(19) 112.22(12)
	99.70 (3) 90.20 (2)		113.32(13)
04"—Cal—Sl	80.30 (3)		108.1(14)
O3 ^m —Ca1—S1	104.86 (3)		109.9 (13)
$O3^{17}$ —Ca1—S1	75.14 (3)	C6 - C7 - H14	109.6 (13)
O_2 —Cal—Sl	18.87(3)	$C_8 - C_7 - H_{14}$	110.4(14) 105.1(19)
02 [·] —Cal—Sl	101.13 (3)	H13-C7-H14	105.1 (18)
$S1^{v}$ —Ca1—S1	180.0	C9 - C8 - C7	113.44 (13)
04—S1—02	113.59 (6)	C9—C8—H15	108.9 (14)
04 - 51 - 05	111.92 (0)	$C_{1} = C_{8} = H_{15}$	107.0(13)
02 = 31 = 03	107.44 (6)	C7-C8-H16	108.1(13) 110.0(13)
$0^{2}-5^{1}-0^{1}$	107.44 (0)	H15_C8_H16	10.0(13) 108.7(19)
03 = 81 = 01	107.04 (6)	C8 - C9 - C10	103.7(19) 113 78 (14)
04— $S1$ — $Ca1$	94 37 (5)	C8 - C9 - H17	107.8 (14)
0^2 —S1—Cal	31 74 (4)	C10—C9—H17	110 3 (13)
O_3 — S_1 — C_{a1}	100 49 (5)	C8—C9—H18	108.8 (13)
01 - S1 - Cal	134 58 (4)	C10—C9—H18	108.4(14)
C1 - O1 - S1	115 39 (9)	H17—C9—H18	107.7(18)
S1	129 39 (6)	$C_{11} - C_{10} - C_{9}$	113 27 (14)
$S1 - O3 - Ca1^{vi}$	138.18 (7)	C11—C10—H19	108.9 (14)
$S1 - O4 - Ca1^{vii}$	160.70 (7)	С9—С10—Н19	110.8 (15)
O1 - C1 - C2	107.53 (12)	C11—C10—H20	109.1 (15)
01—C1—H1	103.4 (15)	C9—C10—H20	108.9 (14)
C2—C1—H1	112.3 (14)	H19—C10—H20	105.6 (19)
O1—C1—H2	111.0 (14)	C10-C11-C12	113.14 (16)
C2—C1—H2	111.6 (15)	C10—C11—H21	107.9 (15)

H1—C1—H2	111 (2)	C12—C11—H21	110.1 (13)
C1—C2—C3	111.44 (13)	C10—C11—H22	106.5 (14)
С1—С2—Н3	107.7 (14)	C12—C11—H22	109.9 (15)
С3—С2—Н3	111.5 (13)	H21—C11—H22	109.1 (19)
C1—C2—H4	109.4 (13)	C11—C12—H23	112.2 (16)
C3—C2—H4	111.2 (14)	C11—C12—H24	111.7 (14)
H3—C2—H4	105.3 (19)	H23—C12—H24	103 (2)
$C_2 = C_3 = C_4$	112.23 (13)	C11—C12—H25	112.3 (14)
$C_2 = C_3 = H_5$	107.4 (15)	H23-C12-H25	111(2) 107(2)
	110.0 (14)		107(2)
04'-Ca1-S1-O4	161.30 (7)		1/6.64 (8)
O4 ^{II} —Ca1—S1—O4	-18.69 (7)	04—SI—O2—Cal	56.79 (10)
O3 ¹¹¹ —Ca1—S1—O4	-109.44 (5)	O3—S1—O2—Ca1	-72.04 (9)
O3 ^{1V} —Ca1—S1—O4	70.56 (5)	O1—S1—O2—Ca1	172.76 (7)
O2—Ca1—S1—O4	-129.73 (10)	O4 ⁱ —Ca1—O2—S1	112.94 (8)
O2 ^v —Ca1—S1—O4	50.26 (10)	O4 ⁱⁱ —Ca1—O2—S1	-67.06 (8)
S1 ^v —Ca1—S1—O4	-136 (16)	O3 ⁱⁱⁱ —Ca1—O2—S1	-160.39 (9)
O4 ⁱ —Ca1—S1—O2	-68.96 (9)	O3 ^{iv} —Ca1—O2—S1	19.61 (9)
O4 ⁱⁱ —Ca1—S1—O2	111.04 (9)	O2 ^v —Ca1—O2—S1	-17 (11)
O3 ⁱⁱⁱ —Ca1—S1—O2	20.30 (9)	S1 ^v —Ca1—O2—S1	180.0
O3 ^{iv} —Ca1—S1—O2	-159.71 (9)	O4—S1—O3—Ca1 ^{vi}	1.53 (12)
O2 ^v —Ca1—S1—O2	179.998 (2)	O2—S1—O3—Ca1 ^{vi}	131.22 (9)
S1 ^v —Ca1—S1—O2	-6(16)	O1—S1—O3—Ca1 ^{vi}	-115.93 (9)
O4 ⁱ —Ca1—S1—O3	48.05 (5)	Ca1—S1—O3—Ca1 ^{vi}	100.63 (9)
O4 ⁱⁱ —Ca1—S1—O3	-131.95 (5)	O2—S1—O4—Ca1 ^{vii}	80.8 (2)
O3 ⁱⁱⁱ —Ca1—S1—O3	137.31 (7)	O3—S1—O4—Ca1 ^{vii}	-149.8 (2)
O3 ^{iv} —Ca1—S1—O3	-42.70 (7)	O1—S1—O4—Ca1 ^{vii}	-32.6 (2)
O2—Ca1—S1—O3	117.01 (9)	Ca1—S1—O4—Ca1 ^{vii}	107.0 (2)
O2 ^v —Ca1—S1—O3	-62.99 (9)	S1-01-C1-C2	156.54 (11)
S1 ^v —Ca1—S1—O3	111 (16)	O1—C1—C2—C3	170.34 (13)
O4 ⁱ —Ca1—S1—O1	-78.87 (7)	C1—C2—C3—C4	178.97 (14)
O4 ⁱⁱ —Ca1—S1—O1	101.13 (7)	C2—C3—C4—C5	176.61 (13)
O3 ⁱⁱⁱ —Ca1—S1—O1	10.38 (7)	C3—C4—C5—C6	-179.75 (13)
O3 ^{iv} —Ca1—S1—O1	-169.62 (7)	C4—C5—C6—C7	179.24 (13)
O2—Ca1—S1—O1	-9.91 (10)	C5—C6—C7—C8	179.09 (13)
O2 ^v —Ca1—S1—O1	170.08 (10)	C6—C7—C8—C9	178.78 (14)
S1 ^v —Ca1—S1—O1	-16 (16)	C7—C8—C9—C10	178.20 (14)
O4—S1—O1—C1	-68.41 (11)	C8—C9—C10—C11	179.60 (15)
O2—S1—O1—C1	171.31 (11)	C9-C10-C11-C12	178.15 (15)
O3—S1—O1—C1	51.95 (12)		
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x-1$, $-y-1$, $-z+1$; (iii) $x-1$, $y-1$, z ; (iv) $-x-1$, $-y$, $-z+1$; (v) $-x-2$, $-y-1$, $-z+1$; (vi) $x+1$, $y+1$, z ; (vii)			

x+1, *y*, *z*.

Fig. 1

